APCalculus - Rentz - Content Assessment (CON) - 30 minutes

Do your best!

(Antiderivatives \& The Fundamental Theorem of Calculus I)

1. Find the indefinite integral $\int \cos (x) d x$.
2. Find any antiderivative of $f(x)=x^{3}$.
3. Find the definite integral $\int_{0}^{1} e^{x} d x$.

(Antiderivatives \& The Fundamental Theorem of Calculus I)

In \#4-\#13, find the indefinite integral (aka "family of antiderivatives"):
4. $\int(9) d x$
5. $\int(x) d x$
6. $\int\left(x^{99}\right) d x$
7. $\int\left(4 x^{3}\right) d x$
8. $\int\left(100 x^{99}-4 x^{3}+15\right) d x$
9. $\int\left(x^{-1}\right) d x$
10. $\int\left(x^{-4}\right) d x$
11. $\int\left(x^{1 / 2}\right) d x$
12. (Suggestion: Compare/contrast with question \#11.) $\int(\sqrt{x}) d x$
13. $\int(\sin (x)) d x$

(Antiderivatives \& The Fundamental Theorem of Calculus I)

In \#14 and \#15, find the definite integral.
Use the Fundamental Theorem of Calculus.
14. $\int_{1}^{3} 4 x^{3} d x=$??? (Show your work.)

Multiple Choice.
Justify your choice by explaining why you rejected an answer.
15. $\int_{1}^{2}\left(\frac{5}{x}-3 e^{x}\right) d x=$
I. $\left.\left(5 \ln |x|-3 e^{x}\right)\right|_{1} ^{2}$
II. $\left.\left(5 \ln |x|-3 e^{x}+e\right)\right|_{1} ^{2}$
III. $\ln (32)-3 e^{2}+3 e$
(a) I only
(b) II only
(c) III only
(d) I and II only
(e) I and III only
(f) I, II, and III

