D05 Sample Assessment Questions

See D05 Practice QQ file (discussed in class).
Also ...

TEXTBOOK 3.6

- Exercises 3, 5, 6, 22, 23, 24, 25, 28, 30.

KHAN ACADEMY:

- Derivatives of Inverse Functions
- Derivatives of Inverse Trigonometric Functions
- Differentiate Logarithmic Functions

TEXTBOOK 3.7:

- Exercises: 2, 3, 4, 9, 13, 15, *16, 23, 27, 31, 33.
- Desmos graphs of the 3.7 Exercise functions - THESE GRAPHS ARE FUN! KHAN ACADEMY
- Implicit Differentiation
as well as the following:

SOLUTIONS for the above problems are given elsewhere on the Husky Hub and within Khan Academy.

Solutions for problems below are given at the end of this handout.)

1. $g(x)=\arctan \left(e^{x}\right)$.

Find the following:
(a) $g(0)$
(b) the instantaneous rate of change of function g at $x=0$:
(c) an equation for the tangent line to $y=g(x)$ at $x=0$:
2.

Figure 3.30 shows $f(x)$ and $f^{-1}(x)$. Using Table 3.6, find

Figure 3:30

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}(\boldsymbol{x})$
$\mathbf{0}$	1	0.7
1	2	1.4
2	4	2.8
3	8	5.5

Table 3.6
(a)
(i) $f(2)$
(ii) $f^{-1}(2)$
(iii) $f^{\prime}(2)$
(iv) $\left(f^{-1}\right)^{\prime}(2)$
(b) The equation of the tangent lines at the points P and Q.
(c) What is the relationship between the two tangent lines?

SOLUTIONS

1. $g(x)=\arctan \left(e^{x}\right)$.

Find the following:
(a) $g(0)=\arctan \left(e^{0}\right)=\arctan (1)=\pi / 4$
(b) the instantaneous rate of change of function g at $x=0$:

$$
\begin{aligned}
& g^{\prime}(x)=\left(\frac{1}{1+\left(e^{x}\right)^{2}}\right)\left(e^{x}\right)=\frac{e^{x}}{1+e^{2 x}} \\
& g^{\prime}(0)=\frac{e^{0}}{1+e^{0}}=\frac{1}{2}
\end{aligned}
$$

(c) an equation for the tangent line to $y=g(x)$ at $x=0$:

$$
y-\frac{\pi}{4}=\frac{1}{2}(x-0) \text { or } y=0.5 x+0.25 \pi
$$

2.

(a) Reading from the table, we have
(i) $f(2)=4$.
(ii) $f^{-1}(2)=1$.
(iii) $f^{\prime}(2)=2.8$.
(iv) To find the derivative of the inverse function, we use

$$
\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}(f-1(2))}=\frac{1}{f^{\prime}(1)}=\frac{1}{1.4}=0.714 .
$$

Notice that the derivative of f^{-1} is the reciprocal of the derivative of f. However, the derivative of f^{-1} is evaluated at 2 , while the derivative of f is evaluated at 1 , where $f^{-1}(2)=1$ and $f(1)=2$.
(b) At the point P, we have $f(3)=8$ and $f^{\prime}(3)=5 \cdot 5$, so the equation of the tangent line at P is

$$
y-8=5.5(x-3)
$$

At the point Q, we have $f^{-1}(8)=3$, so the slope at Q is

$$
\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}=\frac{1}{f^{\prime}(3)}=\frac{1}{5.5} .
$$

Thus, the equation of the tangent line at Q is

$$
y-3=\frac{1}{5.5}(x-8) .
$$

(c) The two tangent lines have reciprocal slopes, and the points $(3,8)$ and $(8,3)$ are reflections of one another across the line $y=x$. Thus, the two tangent lines are reflections of one another across the line $y=x$.

