D07 Review Problems At this point in the course, you should know these topics well. They are heavily involved in our current work.

[+1 1 1. Give all x values in $(0,10)$ where $f^{\prime}(x)=0$:
[$+\mathbf{1]}$ 2. Give all x values in $(0,10)$ where $\mathrm{f}^{\prime}(\mathrm{x})$ is undefined:
[+1] 3. Give all sub-intervals of $(0,10)$ where function f is decreasing:
[+1] 4. Give all sub-intervals of $(0,10)$ where function f is concave up:
$[+4] 5$. Give the x-values for each of the following:
(a) all local (relative) maximum points:
(b) all global (absolute) maximum points:
(c) all global (absolute) minimum points:
(d) all critical points:
[+2]6. Is $(2,5)$ a point of inflection? Explain why or why not.
[+1] 7. At which one point (A, B, C, or D) on the following graph of $y=f(x)$ is the following statement true:

$$
f^{\prime}(x)<0 \text { and } f^{\prime \prime}(x)>0 \text { ? }
$$

[+1] 8 . \qquad

The graph of f^{\prime}, which consists of a quarter-circle and two line segments, is shown above. At $x=2$ which of the following statements is true?
(A) f is not continuous.
(B) f is continuous but not differentiable.
(C) f has a local maximum.
(D) The graph of f has a point of inflection.
[+1] 9 . \qquad
Let $G(x)=[f(x)]^{2}$. In an interval around $x=a$, the graph of f is increasing and concave downward, while G is decreasing. Which describes the graph of G there?
(A) concave downward
(B) concave upward
(C) point of inflection
(D) quadratic

[+9] 10. Free-Response (Calculator OK)

A function f is defined on the interval $[0,4]$, and its derivative is $f^{\prime}(x)=e^{\sin x}-2 \cos 3 x$.
(a) On what interval is f increasing? Justify your answer.
(b) At what value(s) of x does f have local maxima? Justify your answer.
(c) How many points of inflection does the graph of f have? Justify your answer.

Standard 12 Problems DO NOT USE A CALCULATOR ON THIS SECTION. SHOW WORK!

Use this function f and its graph at right for questions 1 and 2 .

$$
f(x)= \begin{cases}\sqrt{-x^{2}+4 x}+3 & 0 \leq x<2 \\ x^{2}-8 x+17 & 2 \leq x<7 \\ x+3 & 7 \leq x<8 \\ \sqrt{-x^{2}+20 x-96}+11 & 8 \leq x \leq 10\end{cases}
$$

[+2] 1. Point $(4,1)$ is a local minimum point. Tell how you would know this by using the first derivative test. (Note: Rely on the equation not the graph!)
$[+2]$ 2. Point $(4,1)$ is a local minimum point. Tell how you would know this by using the second derivative test. (Note: Rely on the equation not the graph!)
[+2] 3. Show work and do NOT use a calculator.
The derivative of a function f is given for all x by

$$
f^{\prime}(x)=x^{2}(x+1)^{3}(x-4)^{2}
$$

The set of x values for which f is a relative minimum is
(A) $\{0,-1,4\}$
(B) $\{-1\}$
(C) $\{0,4\}$
(D) $\{0,-1\}$
[+2] 4. Show work and do NOT use a calculator.
The maximum value of the function $f(x)=x e^{-x}$ is
(A) $\frac{1}{e}$
(B) 1
(C) -1
(D) $-e$
[+1] 5.
The graph below shows the velocity of an object moving along a line for $0 \leq t \leq 9$.

At what time(s) does the object attain its maximum acceleration?
(A) $2<t<5$
(B) $t=6$
(C) $t=8$
(D) $8<\mathrm{t}<9$
[+2] 6.__Show work and do NOT use a calculator!
The value of c for which $f(x)=x+\frac{c}{x}$ has a local minimum at $x=3$ is
(A) -9
(B) 0
(C) 6
(D) 9

[+9] 7. No Calculator Free Response

Given the function $f(x)=e^{2 x}\left(x^{2}-2\right)$:
(a) For what values of x is f decreasing?
(b) Does this decreasing arc reach a local or a global minimum? Justify your answer.
(c) Does f have a global maximum? Justify your answer.

