Optimization \& Related Rate Problems Used on Assessments in the Past

[+4] NO calculator for this problem. Show your work and reasoning for full credit.

1. A farmer wants to fence a rectangular grazing area along a straight river. No fencing is needed along the river. She has 1700 total feet of fencing available. What dimensions (length and width) will maximize the grazing area?
[+4] No calculator for this problem. Show your work and reasoning for full credit.
2. A rectangle has one side along the x-axis, one side along the y-axis, one vertex at the origin, and a second vertex on the graph of $y=1 / x$ (in the first quadrant). What horizontal side length(s) between 1 and 4 inclusive create a rectangle with maximum area?
[+4] Calculator OK for this problem. Show your work and reasoning for full credit.
3. An object moving along a line has velocity $v(t)=t \cos (t)-\ln (t+2)$, where $0 \leq t \leq 10$. At what time does the object achieve its maximum speed (correct to 3 decimal places)?

[+4] 1. (Calculator OK)

One end of a 10 -foot ramp with wheels at both ends is attached to a wall in such a way that it can be made to slide down the wall at a controlled constant rate of 2 feet per minute. At the exact moment when the end of the ramp attached to the wall is 6 feet from the ground, how fast is the other end of the ramp moving along the ground?

[+4] 2. (Calculator OK)

The height of the water in a conical storage tank, shown above, is modeled by a differentiable function h, where $h(t)$ is measured in meters and t is measured in hours. At time $t=0$, the height of the water in the tank is 25 meters. The height is changing at the rate $h^{\prime}(t)=2-\frac{24 e^{-0.025 t}}{t+4}$ meters per hour for $0 \leq t \leq 24$.

When the height of the water in the tank is h meters, the volume of water is $V=\frac{1}{3} \pi h^{3}$. At what rate is the volume of water changing at time $t=0$? Indicate units of measure.

